SELECTIVE 1,4-DIACETOXYLATION OF CONJUGATED DIENES WITH TELLURIUM(IV) OXIDE

Sakae Uemura, * Shin-ichi Fukuzawa, and Masaya Okano Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

Summary: Oxidation of several linear conjugated dienes with tellurium(IV) oxide and lithium bromide in acetic acid affords an isomeric mixture of the corresponding diacetoxyalkenes (1,2- and 1,4-addition products), 1,4-isomer being highly selectively produced when the ratio of LiBr/TeO, is 5-10.

The production of butane-1,4-diol (leading to tetrahydrofuran) by the direct oxidation of buta-1,3-diene is industrially important and remarkable.¹ A key reaction in this process is the liquid phase selective acetoxylation of the diene to 1,4-diacetoxybut-2-ene. We now report a facile and new method for the selective 1,4-diacetoxylation of several conjugated dienes with tellurium(IV) oxide, lithium or sodium halide, and acetic acid, focusing on the oxidation of buta-1,3-diene.

A mixture of buta-1,3-diene (10-50 mmol), tellurium(IV) oxide (5 mmol), lithium bromide (5-50 mmol), and acetic acid (18 ml)/acetic anhydride (2 ml) was heated at 125°C under stirring in a glass pressure bottle. The reaction mixture was heterogeneous when LiBr/TeO₂=1, while it was homogeneous when its ratio is 5-10. Elemental tellurium was deposited as the reaction proceeded. After

5331

usual work up procedure (filtration, addition of aq. NaCl, extraction with CHCl₃, washing with aq. NaHCO3, drying over Na2SO4, evaporation of CHCl3) the organic products were treated with acetic anhydride/pyridine (80°C, 1 h) to convert the hydroxyl derivatives (small amounts) to the corresponding acetates, GLC analysis of which revealed that 3,4-diacetoxybut-1-ene(1), cis-1,4-diacetoxybut-2-ene(2), and its trans-isomer(3) are the products. The ratio of (2)+(3)(1,4-isomers) to (1)(1,2-isomer) and their yields depended profoundly on the ratio of LiBr/TeO₂. Thus, when the latter ratio is 1 or 5, the ratio of (2)+(3)/(1) is 0.49 or 9.0 respectively, and moreover the product yields are improved about five times in the latter case. This indicates that 1,4-isomers are formed highly selectively and in good yields when the ratio of LiBr/TeO, is 5. Since we confirmed separately that no interconversion between (1)-(3) occurred under these reaction conditions and an equilibrium distribution is reported to be 65/35 for (2)+(3)/(1), ^{1c} the observed product distribution is kinetically controlled. The isomer ratios of (3)/(2) are 84-88/12-16 in any case, the formation of trans-isomer being always The reaction proceeded rapidly at higher temperature, but lots of favoured. tarry compounds were produced and the ratio for 1,4-isomer became low at longer reaction time. Typical results are shown in Table. There seems to be no report on such highly selective synthesis of 1,4-isomer by the direct oxidation of buta-1,3-diene except Mitsubishi process using Pd/Te/C catalytic system and BASF method using MnO₂/KBr/CuBr₂.¹

The reaction also proceeded with NaBr, LiCl and HBr in the place of LiBr, but the selectivity for 1,4-isomers was lower. Almost no reaction occurred by using LiF, LiI, NaCl, Br_2 and NH_4Br in the place of LiBr.

Application to other linear conjugated dienes afforded the corresponding isomeric diacetoxyalkenes: i.e., (4), (5) and (6) from isoprene and (7) and (8) from 2,3-dimethylbuta-1,3-diene. The selectivity for 1,4-isomers became higher in these cases as well when the ratio of LiBr/TeO₂ was larger. Typical results are also shown in Table.

In view of the results of the reactions of $olefin^2$ and $acetylene^3$ with TeO₂/LiX/AcOH and also the proposed mechanism of oxidation of buta-1,3-diene

Table. Diacetoxyalkenes from conjugated dienes.^{a)}

Diene	LiBr	Temp	Time	Yield ^{b)}	Isomer ratio ^{b)}
(1010))		(-0)	(1)	(10001)	1,2-:1,4-
Buta-1,3-diene					[(1):(2)+(3)]
25	5	125	20	1.27	[67:33]
25	25	125	20	6.10	[10:90]
25	50	125	20	3.65	[10:90]
25	5	155	5	4.37	[9:91]
25	25	155	10	4.08	[23:77]
10	25	125	20	4.49	[17:83]
25	25 ^{c)}	125	20	3.47	[26:74]
25	50 ^{d)}	125	20	3.07	[63:37]
Isoprene					[(4):(5)+(6)]
25	5	120	20	2.50 ^{e)}	[81:19]
25	25	95	48	3.85 ^{e)}	[20:80]
2,3-Dimethyl- buta-1,3-diene					[(7):(8)]
10	5	70	72	1.46	[37:63]
25	25	70	72	2.88 ^{e)}	[10:90]

a) $\text{TeO}_2(5 \text{ mmol})$ and $\text{AcOH}(18 \text{ ml})-\text{Ac}_2O(2 \text{ ml})$ were used. b) Determined by GLC. For the identification of products, see ref. 7. $(2)/(3)=12\sim16/84\sim88$. (5)/(6)= ca. 3/7. c) NaBr. d) LiCl. e) Isolated yield by column chromatography [SiO₂, hexane/ethyl acetate(5/1)]. with selenium dioxide,⁴ it is probable that the reaction involves an electrophilic attack of tellurium(IV) species such as $Te(0)X^+$, $Te(0Ac)_2X^+$, or TeX_3^+ etc. on one double bond followed by the attack of halide and/or acetate anion (halogeno- and/or acetoxytelluration). Then, the C-Te bond of the produced allylic or homoallylic tellurium(IV) compounds and also the C-X bond may be solvolyzed by acetic acid to give the products. It should be worth to refer that the reaction between $TeCl_4$ and buta-1,3-diene gave bis(4-chloro-2-butenyl)tellurium dichloride in CCl_4^5 and 2,5-dihydrotellurophene 1,1-dichloride in acetonitrile,⁶ respectively.

- For example, (a) A. M. Brownstein and H. L. List, <u>Hydrocarbon Processing</u>, <u>56</u>, No.9, 159(1977). (b) L. F. Hatch and S. Matar, <u>ibid.</u>, <u>57</u>, No. 8, 153 (1978). (c) P. R. Stapp, <u>J. Org. Chem.</u>, <u>44</u>, 3216(1979).
- 2. J. Bergman and L. Engman, J. Organometal. Chem., 181, 335(1979).
- 3. J. Bergman and L. Engman, J. Organometal. Chem., 199, 377(1980).
- K. A. Javaid, N. Sonoda and S. Tsutsumi, <u>Ind. Eng. Chem. Prod. Res. Develop.</u>, <u>9</u>, 87(1970).
- 5. H. Arpe and H. Kuckertz, Angew. Chem. Int. Ed. Engl., 10, 73(1971).
- 6. J. Bergman and L. Engman, <u>J. Am. Chem. Soc.</u>, <u>103</u>, 2715(1981).
- 7. S. Uemura, H. Miyoshi, A. Tabata and M. Okano, Tetrahedron, 37, 291(1981).

(Received in Japan 2 September 1981)